Persistence Modules, Shape Description, and Completeness

نویسندگان

  • Francesca Cagliari
  • Massimo Ferri
  • Luciano Gualandri
  • Claudia Landi
چکیده

Persistence modules are algebraic constructs that can be used to describe the shape of an object starting from a geometric representation of it. As shape descriptors, persistence modules are not complete, that is they may not distinguish non-equivalent shapes. In this paper we show that one reason for this is that homomorphisms between persistence modules forget the geometric nature of the problem. Therefore we introduce geometric homomorphisms between persistence modules, and show that in some cases they perform better. A combinatorial structure, the H0-tree, is shown to be an invariant for geometric isomorphism classes in the case of persistence modules obtained through the 0th persistent homology functor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DASTWAR: a tool for completeness estimation in magnitude-size plane

Today, great observatories around the world, devote a substantial amount of observing time to sky surveys. The resulted images are inputs of source finder modules. These modules search for the target objects and provide us with source catalogues. We sought to quantify the ability of detection tools in recovering faint galaxies regularly encountered in deep surveys. Our approach was based on com...

متن کامل

Associated Graphs of Modules Over Commutative Rings

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...

متن کامل

Computing Bottleneck Distance for $2$-D Interval Decomposable Modules

Computation of the interleaving distance between persistence modules is a central task in topological data analysis. For 1-D persistence modules, thanks to the isometry theorem, this can be done by computing the bottleneck distance with known efficient algorithms. The question is open for most n-D persistence modules, n > 1, because of the well recognized complications of the indecomposables. H...

متن کامل

Limits in modified categories of interest

‎We firstly prove the completeness of the category of crossed modules in a modified category of interest‎. ‎Afterwards‎, ‎we define pullback crossed modules and pullback cat objects that are both obtained by pullback diagrams with extra structures on certain arrows‎. ‎These constructions unify many corresponding results for the cases of groups‎, ‎commutative algebras and can also be adapted to ...

متن کامل

مطالعه سطح کامل بودن مدل ذهنی کتابداران از آیکونهای بخش امانت و فهرست نویسی نرم-افزارهای کتابخانه دیجیتال آذرخش، سیمرغ و نیکا

The present study intended to investigate the librarians’ mental model completeness scale of the icons in the circulation and cataloging modules of Azarakhsh, Simorgh and Nika digital library applications. Following a survey research design, The population of this research consisted of the librarians who were familiar with at least one of the digital library applications. Since the number of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012